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Abstract—When a good leaving group is present in the heteroaromatic azadiene, reaction with 2-aminopyrroles occurs by substi-
tution by addition—elimination instead of cycloaddition. This novel reaction is sensitive to steric effects and takes place in 2-
amino-1-methylpyrrole at C-5 and the exo amino group but at C-3 in 2-amino-1-z-butylpyrrole.

© 2007 Elsevier Ltd. All rights reserved.

Only a few examples of inverse-electron demand Diels—
Alder (IEDDA) reactions of pyrroles have appeared.!
Recently, it has been shown that 2-aminopyrroles
undergo the IEDDA reaction with 1,3,5-triazines to give
pyrrolo[2,3-dJpyrimidines.>* IEDDA reactions are gov-
erned by the LUMO of the electron deficient azadiene.*
Based on work?® on the reaction of simple 2-aminopyr-
roles® with symmetrical 1,3,5-triazines, electron deficient
azadienes whose LUMO energies are more negative or
comparable to that of the 2.4,6-tris(ethoxycarbonyl)-
1,3,5-triazine (—1.477 eV) would be expected to give
cycloaddition products. Reaction of 2,4,5,6-tetrachloro-
pyrimidine with 2-aminopyrroles was studied as a possi-
ble route to azaindoles. Its LUMO value (see below) is
—1.333 ¢V and based on this it could be expected that
this azadiene would also react with 2-aminopyrroles.
Reaction did occur but no evidence for the formation of
any cycloaddition product was found. Instead substitu-
tion by addition—elimination occurred at both the exo
amino group and C-5 or at C-3, depending on the
size of the l-alkyl substituent. This communication
reports on the mechanism of this novel 2-aminopyrrole
reaction.
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2-Aminopyrroles 1 were generated in situ by adding tri-
ethylamine (TEA) to a solution of the tetraphenylborate
salt of the 2-aminopyrrole in THF and then adding
2,4,5,6-tetrachloropyrimidine (2).° Products were iso-
lated by flash chromatography and identified by their
spectral properties.” Each of the reaction products
(3-5) had an amino group and three chlorine atoms.’
Scheme 1 illustrates the products obtained and Table 1
summarizes the reaction conditions and yields. No evi-
dence for cycloaddition or other products was found
by TLC.

Nucleophilic attack by ammonia and aliphatic and aro-
matic amines has been reported to occur almost exclu-
sively at C-4(6) of 2,4,5,6-tetrachloropyrimidine (2).°
Structures proposed for 2-aminopyrroles 3-5 reflected
these results. The '"H NMR spectrum of 3 showed the
presence of three-pyrrole ring protons.” This compound
wgs therefore assigned the structure indicated in Scheme
1.

The 'H NMR spectra of 4 and 5 each contained a pair
of doublets and it seemed unlikely, given the differences
in chemical shift, that 4 and 5 were homologs.” '"H NMR
spectral data could not be used to definitively determine
the pattern of substitution in 4 and 5. Compound 4
reacted with 2.4,6-tris(trifluoromethyl)-1,3,5-triazine
(IEDDA) in 300 min to give a pyrrolo[2,3-d]pyrimi-
dine.>? In contrast after five days, under the same reac-
tion conditions, there was no evidence that 5 had reacted
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Scheme 1.

Table 1. Yields and reaction times for addition—elimination reactions

R Product(s) 1/2/TEA* Reaction time (h) Yield® (%)
Me 3 1.9:1:1.1 20 44
4 10
Me 3 1.1:1:3.1 3 52
4 15
t-Butyl 5 1.9:1:1.1 20 27
t-Butyl 5 1.5:1:1 23 75¢
-Butyl 5 1.1:1:221 25 67¢
# Triethylamine.

®Isolated product.
“Yield based on 40% recovered 2.
9Yield based on 26% recovered 2.

with this 1,3,5-triazine. This difference in reactivity was
used to distinguish between 4 and 5.1

Stepwise reaction of a pyrrole with a neutral electrophile
gives a zwitterion (Meisenheimer complex). Zwitterions,
analogous to 6-8 (Scheme 2), have been proposed as the
initially formed intermediates in the normal Diels—Al-
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der,!>13 inverse-electron demand Diels-Alder'* and
Michael addition!>!3 reactions of pyrroles. The differ-
ence between these cases where addition took place,
and this work (addition—elimination), was the presence
of a good leaving group (chloride) in the zwitterion.
Loss of chloride to give an addition—elimination product
was faster than cyclization of the zwitterion.

A zwitterion intermediate analogous to 6 has been ob-
served by 'H and 'F NMR in the IEDDA reaction of
2-amino-5-substituted pyrroles with a 1,3,5-triazine.'!
Interestingly this zwitterion does not contain a good
leaving group and the expected cycloaddition product
was formed.>3 Substitution by addition—elimination
competed with cycloaddition in the reactions of pyrrole
and 1-methylpyrrole with 4,5-dicyanopyridiazine.'> In
these examples the expected zwitterion intermediate also
had a good leaving group——cyanide ion.

Reaction of 2-amino-1-z-butylpyrrole (1b) with 2
occurred exclusively at C-3 to give 5. Electrophilic sub-
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Table 2. HOMO and LUMO energies, charge distributions and coefficients for 2-aminopyrroles
4 3
s/ \2 g
N NH,
17
e/au 1a e/au 1b
HOMO LUMO HOMO LUMO
E/eV: —7.99 1.29 —7.96 1.36
N-1 —0.1453 —0.075390 —0.406416 —0.1289 —0.072338 —0.408374
C-2 —0.0037 —0.501123 0.570941 —0.0062 —0.515103 0.568207
C-3 —0.2389 —0.420141 —0.308394 —0.2411 —0.406978 —0.317184
C4 —0.1764 0.297924 —0.249957 —0.1834 0.310311 —0.229477
C-5 —0.1459 0.543809 0.506341 —0.1449 0.546671 0.497878
N-6 —0.2823 0.349849 —0.095750 —0.2839 0.309007 0.076818
C-7 —0.0707 —0.007001 —0.082816 0.0921 0.010530 —0.092915
w=229D w=230D

AH;=44.933 kcal mol ™!

AH;=36.299 kcal mol ™!

stitution in pyrroles is very sensitive to the steric bulk of
the substituents on the pyrrole nitrogen.!® Recently the
phosphorylation of 1-z-butylpyrrole was reported to
have occurred exclusively at C-3.!7 It has been reported
that in 2-aminofurans substitution by addition—elimina-
tion took place at C-5 with 2-aminofuran; but when C-5
was substituted, reaction took place at C-3.'® Results
with 2-amino-1-z-butylpyrrole (1b) were therefore attrib-
uted to a steric effect.!®!®

Table 2 shows the HOMO/LUMO energies, coefficients
and charge distributions calculated for 2-amino-1-meth-
ylpyrrole (1a) and 2-amino-1-z-butylpyrrole (1b).' As
expected the HOMO/LUMO values and the properties
at C-3, C-5 and N-6 of the two 2-aminopyrroles are
essentially the same. Values calculated for 2.4,5,6-tetra-
chloropyrimidine (2) are: HOMO (—10.318 eV) and
LUMO (—1.333 eV). Based on these results 2,4,5,6-tetra-
chloropyrimidine (2) can be classified as a soft electro-
phile and the 2-aminopyrroles as intermediate between
hard and soft nucleophiles. Similar combinations of
electrophiles and amines (nucleophiles) have been
reported to react preferentially at carbon—as observed
in this work (Table 1).°

Reaction at C-3 would be predicted (Table 2) to be likely
in both 2-aminopyrroles 1a and 1b. No C-3 substituted
product was observed in the reaction of 2-amino-1-
methylpyrrole (1a) with 2. This suggested the possibility
that the formation of 5 (with R = Me) was not kineti-
cally controlled. Equilibrium between the reactants
and zwitterion 8 (with R = Me) could explain why no
C-3 substitution was observed with la. Zwitterion 8
(with R =Me) formed, but loss of chloride ion was
slower than its reversion to reactants and subsequent
formation of 3 and 4 from their respective zwitterions.
The possibility that the formation of all of products
(3-5) was not kinetically controlled cannot be explicitly
eliminated. Reversible formation of the initial zwitterion
intermediate has been proposed in the IEDDA reac-
tion of 2-amino-5-substituted pyrroles.!! Similarly the

reversible formation of zwitterion intermediates has
been reported in the IEDDA reactions of 1,2,4-tri-
azines®! and 1,2,4,5-tetrazines.?? It should also be noted
that the reversible formation of a Meisenheimer com-
plex (zwitterion) has been observed in aromatic nucleo-
philic substitution reactions where the nucleophile is an
amine.>’

Reactions described in this communication can be con-
sidered to be, with respect to 2,4,5,6-tetrachloropyrimi-
dine, an SNyAR process with an ambident nucleophile
(2-aminopyrrole). Ambident behaviour has been re-
ported for 2-aminofurans'® and 5-aminoimidazoles.?’
The results reported in this communication, are to our
best knowledge, novel in the chemistry of 2-amino-
pyrroles; there are no other reported examples of a 2-
aminopyrrole reacting as an enamine or dienamine—
undergoing substitution by competitive addition—elimi-
nation reactions.’*2> It has been reported that simple
2-aminopyrroles reacted with dimethyl acetylenedicarb-
oxylate (DMAD) to give Michael addition products at
C-5.2 DMAD reacted with a 2-amino-3-cyano-3,4-di-
methylpyrrole at the exo amino group and at C-5.%7
The latter reaction gave a non-pyrrolic addition product.

When 2,4,5,6-tetrachloropyrimidine (2) is used as the
electron deficient heteroaromatic azadiene substitution
by addition—elimination takes place not because it is a
super electrophile, but because it contains a good leav-
ing group. Substitution by addition—elimination would
be expected to be a competitive process in non-concerted
IEDDA reactions when the electron deficient azadiene
bears a potential leaving group.'>
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